UP Alumnus Leads Digital Health Initiative for PH Marginalized Communities

UP Alumnus Leads Digital Health Initiative for PH Marginalized Communities

Published: November 17, 2025
By: Eunice Jean C. Patron

The ATIPAN Project aims to bring digital health to marginalized communities. (Photo credit: Center for Informatics)

Remote communities in the Philippines face challenges that hinder their access to quality healthcare services. In response, Dr. Romulo De Castro and his team implemented the ATIPAN Project, which aims to bring digital health to marginalized communities.

 

Drawing inspiration from the Hiligaynon word atipan—which means “to take care of”—and from the Ati communities Dr. De Castro’s team serves, the project was launched in 2021 to offer free teleconsultations, provide technology and training for health workers in partner indigenous people and rural low income communities, as well as supply basic medication and health essentials.

 

The ATIPAN Project has received positive feedback from communities, who highlighted the benefits of telehealth in their area. While the long-term impacts of the project have yet to be fully assessed, there is already evidence of its potential to transform health care delivery in remote and under-resourced communities, primarily by improving local access to health services.

 

Dr. De Castro is an alumnus of the University of the Philippines – Diliman College of Science (UPD-CS), graduating with a degree in Molecular Biology and Biotechnology. He is now the Director of the Center for Informatics of the University of San Agustin in Iloilo City.

 

Dr. De Castro is the resource speaker of the recent “Innovation Impact Stories: A Webinar Series on the Societal Impacts of Science Innovation” of the University of the Philippines – Diliman College of Science’s (UPD-CS) Innovation Program held last October 15, 2025 via Zoom.

 

Innovation Impact Stories is a webinar series that explores how science, technology, and innovation drive real-world impact. This initiative highlights the journeys, challenges, and successes behind research-driven innovations that have made meaningful contributions across various fields. It aims to inform and inspire students, researchers, and faculty to foster a culture of purposeful and collaborative innovation that bridges academic theory with practical application.

For inquiries about Innovation Impact Stories, please message cs.innovation_committee@science.upd.edu.ph

 

References:

Zamora, P. R., Celeste, J., Rivera, R. L., Petrola, J. P., Aguila, R. N., Ledesma, J., Ermoso, M. K., & De Castro, R. (2024). The ATIPAN project: A community-based digital health strategy toward UHC. Oxford Open Digital Health, 2. https://doi.org/10.1093/oodh/oqae011

 

For interview requests and other concerns, please contact media@science.upd.edu.ph.

UP Mathematician Nakagawa ng Framework para Ilarawan ang Complex Quantum Operators

UP Mathematician Nakagawa ng Framework para Ilarawan ang Complex Quantum Operators

Published: November 11, 2025
By: Eunice Jean C. Patron
Translated by: Dr. Ian Kendrich C. Fontanilla

Ang graph na ito ay nagpapakita ng time-frequency shifted Gaussian function, isang halimbawa ng wavelet. Maraming pag-aaral sa harmonic analysis ang nakatuon sa pagbabasag o pagde-decompose ng mga signal gamit ang mga wavelet na ganito. (Larawan: Dr. Arvin Lamando)

Ang mga mathematician na sina Dr. Arvin Lamando ng University of the Philippines – Diliman College of Science’s Institute of Mathematics (UPD-CS IM) at Dr. Henry McNulty ng Norwegian University of Science and Technology ay nakatuklas ng bagong paraan upang maunawaan ang mga mathematical “machine” na tinatawag na operator, na susi sa quantum mechanics at signal processing. Ipinapakita ng kanilang pag-aaral na kahit na ang pinaka masalimuot sa mga operator na ito ay maaaring hatiin sa mas simpleng mga bahagi at pagkatapos ay bubuuhin muli, na nagbibigay ng mga bagong insight sa mga quantum system at technology.

 

“Malaking bahagi ng akung research ay nasa area ng mathematics na “harmonic analysis””, sabi Dr. Lamando. “Puwede ba nating i-decompose ang mga arbitrary na signal f bilang sum of pure frequencies (sines at cosine)? Kaya itong sagutin ng Fourier transform.”

 

Maaari nating isipin ang signal bilang isang musical chord. Hinahati ng Fourier transform ang tunog sa mga indibidwal nitong pure note. At tulad ng kung paano tayo mag-replay ng chord sa pamamagitan ng pagpindot sa parehong mga note nang sabay sa isang piano, maaari rin nating buuin ang mga “abstract signal” mula sa mga “pure frequency” nila.

“Habang ang harmonic analysis ay matagal nang nakaugat sa real-world applications, lumalabas na ang mga ideya na may kinalaman sa Fourier transform ay napaka-amenable pala sa abstraction; nakakagulat na may mga koneksyon din ito sa iba’t ibang sangay ng abstract mathematics,” paliwanag niya.

 

Habang ang classical harmonic analysis ay tumatalakay sa mga signal at kanilang mga frequency, ang quantum harmonic analysis naman ay gumagamit ng mga katulad na ideya sa mga operator. Pinag-aaralan ng field na ito ang mga operator na sumusunod sa mga partikular na tuntunin sa matematika na ginagamit kapag isinasalin ang classical physics sa quantum physics.

 

“Nagpakilala rin kami ng isa pang ideya, ang tinatawag na ‘modulation’ ng isang operator sa phase space. Ang ideyang ito ay pare-pareho sa mga pangunahing tema ng quantum harmonic analysis: sa katunayan, ang operator Fourier transform ng operator modulation ay nagreresulta sa isang isinalin na operator Fourier transform,” pahayag niya. Sa kanilang pag-aaral, natunton ng mga mathematician ang mga operator na nananatiling hindi nagbabago, o invariant, kahit na isinalin o binago sa mga lattice sa phase space.

 

“Ipinakita namin na nagtataglay ang mga operator na ito ng mga katangiang kahalintulad sa classical case,” ibinahagi ni Dr. Lamando, at idinagdag na siya at si Dr. McNulty ay gumamit ng isang mathematical framework na tinatawag na Heisenberg module upang mas maunawaan at mailarawan ang mga operator na ito.

 

Nalaman ng mga mathematician na maaaring mas matantya pa ang mga invariant na operator na ito gamit ang mas simpleng mga operator na tinatawag na finite-rank operators, na ang ibig sabihin ay mailalarawan ang kanilang output gamit lamang ang finite number of dimensions. Nagsisilbing tulay ang kanilang mga resulta sa abstract algebraic ideas at concrete structures sa quantum mathematics.

 

Ang kanilang pananaliksik, “On Modulation and Translation Invariant Operators and the Heisenberg Module,” ay lumabas sa Journal of Fourier Analysis and Applications, na naglalathala ng mga artikulong may mga paksa mula sa abstract harmonic analysis at group representation theory hanggang sa real world applications at partial differential equations.

 

References:

Lamando, A., & McNulty, H. (2025). On modulation and translation invariant operators and the heisenberg module. Journal of Fourier Analysis and Applications, 31(4). https://doi.org/10.1007/s00041-025-10176-5

 

For interview requests and other concerns, please contact media@science.upd.edu.ph.

UP Mathematician Develops Framework to Describe Complex Quantum Operators

UP Mathematician Develops Framework to Describe Complex Quantum Operators

Published: November 11, 2025
By: Eunice Jean C. Patron

The plot of a time-frequency shifted Gausssian function, an example of a wavelet. A substantial effort in harmonic analysis is devoted to the decomposition of signals in terms of wavelets. (Photo credit: Dr. Arvin Lamando)

Mathematicians Dr. Arvin Lamando of the University of the Philippines – Diliman College of Science’s Institute of Mathematics (UPD-CS IM) and Dr. Henry McNulty of the Norwegian University of Science and Technology have found a new way to understand mathematical “machines” called operators, which are key to quantum mechanics and signal processing. Their study shows that even the most intricate of these operators can be broken down into simpler parts and then reconstructed, offering new insights into quantum systems and technologies.

 

“My research is mostly within the area of mathematics called ‘harmonic analysis,’” Dr. Lamando said. “Can we always decompose arbitrary signals f as a sum of pure frequencies (sines and cosines)? The Fourier transform answers this.”

 

We can think of the signal as a musical chord. The Fourier transform breaks the sound down into its individual pure notes. And just like how we can replay the chord by pressing those same notes together on a piano, we can also reconstruct “abstract signals” from its “pure frequencies.”

 

“While harmonic analysis has historical roots in real-world applications, the ideas related to the Fourier transform turned out to be very amenable to abstraction; and it is surprising that it has connections to different branches of abstract mathematics,” he explained.

 

As classical harmonic analysis deals with signals and their frequencies, quantum harmonic analysis applies similar ideas to operators. This field studies operators that follow specific mathematical rules used when translating classical physics into quantum physics. 

 

“We also introduced another notion, called the ‘modulation’ of an operator in the phase space. This notion is consistent with the main themes of quantum harmonic analysis: in fact, the operator Fourier transform of operator modulation results in a translated operator Fourier transform,” he said. In their study, the mathematicians focused on operators that remain unchanged, or invariant, even when translated or modulated over lattices on the phase space. 

“We have shown that these operators possess properties analogous to the classical case,” Dr. Lamando shared, adding that he and Dr. McNulty used a mathematical framework called the Heisenberg module to better understand and describe these operators.

 

The mathematicians found that these invariant operators can be closely approximated using much simpler operators called finite-rank operators, which can roughly be interpreted to mean that their outputs can be described using only a finite number of dimensions. Their results bridge abstract algebraic ideas to concrete structures in quantum mathematics.

 

Their research, “On Modulation and Translation Invariant Operators and the Heisenberg Module,” was included in the Journal of Fourier Analysis and Applications, which publishes articles with topics that range from abstract harmonic analysis and group representation theory to real world applications and partial differential equations.

 

References:

Lamando, A., & McNulty, H. (2025). On modulation and translation invariant operators and the heisenberg module. Journal of Fourier Analysis and Applications, 31(4). https://doi.org/10.1007/s00041-025-10176-5

 

For interview requests and other concerns, please contact media@science.upd.edu.ph.

‘Forged in Mentorship and Innovation’: Binalangkas ng Bagong UPD-CS Dean ang mga Plano sa Hinaharap

'Forged in Mentorship and Innovation': Binalangkas ng Bagong UPD-CS Dean ang mga Plano sa Hinaharap

Published: November 3, 2025
By: Eunice Jean C. Patron
Translated by: Dr. Ian Kendrich C. Fontanilla

Si Dr. Cynthia P. Saloma ay opisyal na kinumpirma bilang bagong Dekana ng UPD-CS noong Oktubre 20.

Sa pagpasok ng University of the Philippines – Diliman College of Science (UPD-CS) sa isang panahong hinihimok ng guidance at innovation, isa sa mga pangunahing molecular biologist sa bansa ang mamumuno ngayon upang patnubayan ang Kolehiyo tungo sa kahusayan.

 

“Mentorship is the heartbeat of academic excellence,” sabi ni Dr. Cynthia P. Saloma ng UPD-CS National Institute of Molecular Biology and Biotechnology (NIMBB), na kamakailan lamang ay na-affirm bilang bagong Dekano ng Kolehiyo noong Oktubre 20. “It is through your guidance that our students will develop the vision and the resilience to tackle the unknown.”

 

Sa kanyang affirmation address, binigyang-diin ni Dr. Saloma na higit pa sa supervision,dapat ding tumanggap ang mga mag-aaral ng UPD-CS ng transformative mentorship mula sa mga guro. Sa kanyang termino, nakatuon siya sa patuloy na pagsuporta ng Kolehiyo sa mga guro nito bilang mga mentor sa pamamagitan ng paglinang ng isang environment kung saan ang mga mag-aaral ay sinusuportahan, empowered, at pinaghahanda upang maging susunod na mga pinuno.

 

“The Philippines faces complex challenges and opportunities, all of which demand a robust pipeline of homegrown, world-class experts,” dagdag ni Dr. Saloma, na binibigyang-diin na ang pamumuhunan sa pag-unlad ng mga mag-aaral ay isa ring pamumuhunan sa kakayahan ng bansa na mamuno, makipagkumpetensya, at mag-innovate sa pandaigdigang antas.

 

Binigyang-diin din ng bagong Dekano ang pangako ng Kolehiyo na gamitin ang makabagong pananaliksik at kolaborasyon upang harapin ang mga hamon na kinakaharap ng Pilipinas—mula sa pagbabago ng klima at seguridad sa pagkain hanggang sa kalusugan ng mundo.

 

Pagpapanatili ng kahusayan sa pananaliksik

 

Upang matupad ang mga pangako ng Kolehiyo, binanggit ni Dr. Saloma na dapat munang tugunan ang isang pangunahing isyu—sustainable support. Pinaalalahanan niya ang komunidad ng UPD-CS kung paano makakagawa ng pagbabago ang pagpopondo sa pagsulong ng mga scientific project:

 

“No matter how brilliant an idea is, without a well-equipped lab, it remains a pipe dream—a project deferred. A promising student or researcher without adequate funding is potential left untapped,” diin ni Dr. Saloma “We are thankful for the grants we receive for certain projects, but we face a critical gap in the foundational funding that keeps our lights on, our equipment running, and our facilities safe and modern. This is the lifeblood of our daily operations.”

 

Nangako siya na unang tututukan ng kanyang deanship ang pagbuo ng mga partnership sa iba’t ibang sektor—mula sa administrasyon ng UP at alumni ng UPD-CS hanggang sa mga kasama sa industriya, at mga ahensya mula sa pribado at gobyerno. “It is investing in the very infrastructure of innovation and mentorship in our country,” dagdag niya.

 

Si Dr. Saloma ay ang ika-walong Dekano ng UPD-CS. Isa siya sa mga founding member ng Philippine Genome Center at nagsilbi bilang Executive Director nito mula 2018 hanggang 2023. Nagsilbi rin siyang Director ng NIMBB mula 2012 hanggang 2018. Si Dr. Saloma ay ang Principal Investigator sa Laboratory of Molecular and Cell Biology (LMCB) ng NIMBB, na nakatuon sa gene function in development.

 

Si Dean Saloma ay susuportahan ng College Executive Board na binubuo nina Dr. Manuel Joseph C. Loquias (Academic Affairs), Dr. Betchaida D. Payot (Research and Extension), Dr. Allan Christopher C. Yago (Facilities and Resources), Dr. Leilani G. Sumabat-Dacones (Student and Public Affairs), Dr. Marie Christine M. Obusan (College Secretary), at Dr. Rheadel G. Fulgencio (Assistant College Secretary), kasama ang mga program at center director tulad nina Dr. Bantang (Computational Science Research Center), Dr. Lerrie Ann D.G. Ipulan-Colet (Science and Society Program), Dr. Marienette M. Vega (Material Science and Engineering Program), Dr. Rachelle R. Sambayan (Data Science Program), Dr. William Patrick C. Buhian (NSTP Coordinator), at Dr. Wilfred John E. Santiañez (Graduate Program Coordinator).

 

For interview requests and other concerns, please contact media@science.upd.edu.ph.

‘Forged in Mentorship and Innovation’: New UPD-CS Dean Outlines Future Plans

‘Forged in Mentorship and Innovation’: New UPD-CS Dean Outlines Future Plans

Published: November 3, 2025
By: Eunice Jean C. Patron

Dr. Cynthia P. Saloma was recently affirmed as the new Dean of UPD-CS last October 20.

As the University of the Philippines – Diliman College of Science (UPD-CS) enters a new era driven by guidance and innovation, one of the country’s leading molecular biologists now takes the helm to steer the college towards excellence.

 

“Mentorship is the heartbeat of academic excellence,” said Dr. Cynthia P. Saloma of the UPD-CS National Institute of Molecular Biology and Biotechnology (NIMBB), who was recently affirmed as the new Dean of the College last October 20. “It is through your guidance that our students will develop the vision and the resilience to tackle the unknown.”

 

In her affirmation address, Dr. Saloma emphasized that beyond supervision, students of UPD-CS should also receive transformative mentorship from the faculty. During her term, she committed to ensuring that the College continues to support its faculty as mentors by cultivating an environment where students are supported, empowered, and equipped to become future leaders.

 

“The Philippines faces complex challenges and opportunities, all of which demand a robust pipeline of homegrown, world-class experts,” Dr. Saloma added, highlighting that investing in students’ development is also an investment in the country’s capacity to lead, compete, and innovate at a global level.

 

The new dean also highlighted the College’s commitment to harness innovative research and collaboration to tackle head-on the challenges the Philippines faces—from climate change and food security to global health.

 

Sustaining research excellence

 

To make the College’s commitments possible, Dr. Saloma noted that a fundamental issue must be addressed—sustainable support. She reminded the UPD-CS community of how funding can make a difference in advancing scientific projects:

 

“No matter how brilliant an idea is, without a well-equipped lab, it remains a pipe dream—a project deferred. A promising student or researcher without adequate funding is potential left untapped,” underscored Dr. Saloma “We are thankful for the grants we receive for certain projects, but we face a critical gap in the foundational funding that keeps our lights on, our equipment running, and our facilities safe and modern. This is the lifeblood of our daily operations.”

 

She pledged that a key focus of her deanship will be to build partnerships with various sectors—from the UP administration and UPD-CS alumni to industry partners, and both private and government agencies. “It is investing in the very infrastructure of innovation and mentorship in our country,” she added.

 

Dr. Saloma is the 8th Dean of UPD-CS. She is one of the founding members of the Philippine Genome Center and served as its Executive Director from 2018 to 2023. She also served as Director of NIMBB from 2012 to 2018. Dr. Saloma is the Principal Investigator at the Laboratory of Molecular and Cell Biology (LMCB) of NIMBB, which focuses on gene function in development.

 

Dean Saloma will be supported by the College Executive Board composed of Dr. Manuel Joseph C. Loquias (Academic Affairs), Dr. Betchaida D. Payot (Research and Extension), Dr. Allan Christopher C. Yago (Facilities and Resources), Dr. Leilani G. Sumabat-Dacones (Student and Public Affairs), and Dr. Marie Christine M. Obusan (College Secretary), along with program and center directors Dr. Johnrob Y. Bantang (Computational Science Research Center), Dr. Lerrie Ann D.G. Ipulan-Colet (Science and Society Program), Dr. Marienette M. Vega (Material Science and Engineering Program), Dr. Rachelle R. Sambayan (Data Science Program), Dr. William Patrick C. Buhian (NSTP Coordinator), Dr. Wilfred John E. Santiañez (Graduate Program Coordinator), and Dr. Rheadel G. Fulgencio (Assistant College Secretary).

 

For interview requests and other concerns, please contact media@science.upd.edu.ph.

Unang pagsukat ng “Elusive” na Light Shift sa Low-Loss Dielectric Materials naitala ng mga mananaliksik ng UP

Unang pagsukat ng “Elusive” na Light Shift sa Low-Loss Dielectric Materials naitala ng mga mananaliksik ng UP

Published: October 29, 2025
By: Eunice Jean C. Patron

Ang pag-reflect ng isang laser sa salamin ay tila sumusunod sa “mirror rule”- ang anggulong papasok ay katumbas ng anggulong palabas. Ngunit  kapag gumamit ng mga sensitibong instrumento, mapapansin na lumilihis ng bahagya ang sinag. Kadalasan, kasing liit lang ng isang hibla ng buhok ang distansya ng paglihis. Ang elusive na epektong ito, na tinatawag na Goos–Hänchen (GH) shift, ay sinuri kamakailan lang ng mga siyentipiko mula sa College of Science ng UP Diliman (UPD-CS) sa mga materyales na halos hindi  nag-“aabsorb” ng liwanag—tulad ng ginagamit sa mga semiconductor at photonics.

 

Experimental set-up sa isang optical table sa Darkroom ng Structured Light and Applications Lab, Photonics Research Laboratory, sa National Institute of Physics. (Larawan: Jared Joshua Operaña)

Pinag-aralan nila Jared Joshua Operaña ng Materials Science and Engineering Program (MSEP), kasama sina Dr. Niña Zambale Simon at Dr. Nathaniel Hermosa ng National Institute of Physics (NIP), kung paano nakita ang GH shift sa low-loss dielectric materials gaya ng silicon at gallium arsenide. Ipinakita ng kanilang pananaliksik na ang “elusive na light shift” na ito ay pwedeng maging mas malaki, at ang paglaki ay nakadepende sa mga katangian ng materyal na gamit, bagay na ikinasorpresa nila.

 

Kauna-unahang Pagsukat

 

“Hanggang ngayon, ang GH shifts ay kadalasang nasusukat lamang sa mga metal o kakaibang layered structures, at ito ay dahil mas malaki ang GH shifts sa mga materyales na iyon kaya’t madali itong makita,” paliwanag ni Operaña sa isang panayam. “Ngunit matagal nang ipinapahiwatig ng mga teoretikal na pag-aaral na kahit ang mga ordinaryo at uncoated dielectric na halos hindi nag-aabsorb ng liwanag ay kayang makapagtala ng di-karaniwang malalaking GH shifts.”

 

Mahirap sukatin ang mga malalaking GH shifts na ito gamit ang mga tradisyonal na instrumento dahil nagaganap lamang ang mga ito sa napakakitid na saklaw ng mga anggulo. Ngunit ang grupo nila Operaña ang kauna-unahang nakapagpatunay ng mga prediksyong ito sa pamamagitan ng aktuwal na eksperimento—isang mahalagang hakbang na nagpapakita na kahit ang mga karaniwang materyales ay maaaring magkaroon ng makahulugang GH shifts. “Ipinakita namin na ang silicon, na mas mababa ang “light absorption” kaysa gallium arsenide, ay nakapagtala ng GH shift na hanggang 100 beses ng wavelength ng laser beam,” dagdag pa niya.

 

Sa kanilang pananaliksik, nasukat lang nila ang GH shifts sa 543 at 633 nanometers, ngunit plano nilang palawakin pa ito upang isama ang mas maraming pang laser wavelengths, at  posibleng maski ang mga wavelength na labas sa visible region ng spektrum. Possible ring baguhin ng ibang mananaliksik ang mga katangian ng mga materyales na kanilang gagamitin, depende sa layunin ng kanilang pag-aaral.

 

Patungo sa Praktikal na Aplikasyon at iba pa

 

Ang pagtuklas sa pagiging sensitibo ng GH shifts sa maliit na pagkakaiba ng “light absorption properties” ng materyales ay pwedeng gamitin na pamamaraan para gumawa ng mga praktikal na instrument para sa pananaliksik at industriya. “Sa industriya, maaaring makabuo ng maliliit na instrumento batay sa GH-shift detection para sa quality control ng mga semiconductor, photonics, at advanced coatings, kung saan napakahalaga ng eksakto at tiyak na kontrol sa mga katangian ng materyales,” paliwanag ni Operaña.

 

Sa larangan naman ng akademikong pananaliksik, pwede itong gamitin na bago at napakasensitibong paraan ng pag-aaral kung paano nakikipag-ugnayan ang mga materyales sa liwanag, bagay na magbubukas ng daan sa mas malalim na pag-unawa at mga bagong aplikasyon.

 

Ang kanilang pag-aaral ay sinuportahan ng Department of Science and Technology – Philippine Council for Industry, Energy, and Emerging Technology Research and Development (DOST-PCIEERD) at ng Office of the Vice Chancellor for Research and Development (OVCRD) ng University of the Philippines.

 

References:

Operaña, J. J., Zambale Simon, N., & Hermosa, N. (2025). Observation of the spatial goos–hänchen shift due to low-loss dielectrics. Optics Letters, 50(11), 3533. https://doi.org/10.1364/ol.550141

 

For interview requests and other concerns, please contact media@science.upd.edu.ph.

UP Researchers Record First Measurement of Elusive Light Shift in Low-Loss Dielectric Materials

UP Researchers Record First Measurement of Elusive Light Shift in Low-Loss Dielectric Materials

Published: October 29, 2025
By: Eunice Jean C. Patron

A laser reflecting off glass looks like it follows the mirror rule—angle in equals angle out. But with sensitive tools, the spot shifts slightly, no bigger than a strand of hair. This elusive effect, called the Goos–Hänchen (GH) shift, was recently explored by scientists from the UP Diliman College of Science (UPD-CS) in materials that barely absorb light—such as those used in semiconductors and photonics.

 

Early stages of the experiment set-up in one of the optical tables at the Darkroom of the Structured Light and Applications Lab, Photonics Research Laboratory, at the National Institute of Physics. (Photo credit: Jared Joshua Operaña)

Jared Joshua Operaña of the UPD-CS Materials Science and Engineering Program (MSEP), together with Drs. Niña Zambale Simon and Nathaniel Hermosa of the UPD-CS National Institute of Physics (NIP), studied how the GH shift is evident in low-loss dielectric materials such as silicon and gallium arsenide. The findings of their research show that this elusive light shift can become surprisingly large, revealing that the size of the GH shift changes depending on the material’s properties.

 

A First-of-its-kind Measurement

 

“Until now, GH shifts were mostly observed in metals or exotic layered structures, because these are the materials where GH shifts are relatively larger and thus are easily observed,” Operaña said in an interview. “But theoretical studies have long suggested that even ordinary, uncoated dielectrics with very little light absorption should produce unusually large GH shifts.”

 

These large GH shifts are difficult to measure with traditional tools, as they occur only within an extremely narrow range of angles. Operaña’s team is the first to experimentally confirm these predictions in materials that barely absorb light, marking an important step in showing that widely available materials can exhibit significant GH shifts. “We showed that silicon, which absorbs less light than gallium arsenide, produces a shift up to 100 times the wavelength of the laser beam,” he added.

 

In their research, the team measured GH shifts at just 543 and 633 nanometers, but they plan to expand their method to include more laser wavelengths, possibly even those outside the visible region. Other researchers may also modify the properties of the materials they will use, depending on the goals of their studies.

 

Toward Real-Life Use and Beyond

 

Discovering the sensitivity of GH shifts to subtle differences in the material’s light absorption gives their method the potential to evolve into a practical tool for both research and industry. “In the commercial setting, compact instruments based on GH-shift detection could be developed for quality control in semiconductors, photonics, and advanced coatings, where precise control of material properties is critical,” explained Operaña.

 

In academic research, their method provides a new and highly sensitive approach to studying how materials interact with light, paving the way to deeper understanding and new applications.

Their study is funded by the Department of Science and Technology Philippine Council for

Industry, Energy, and Emerging Technology Research and Development (DOST-PCIEERD) and the University of the Philippines Office of the Vice Chancellor for Research and Development (OVCRD).

 

References:

Operaña, J. J., Zambale Simon, N., & Hermosa, N. (2025). Observation of the spatial goos–hänchen shift due to low-loss dielectrics. Optics Letters, 50(11), 3533. https://doi.org/10.1364/ol.550141

 

For interview requests and other concerns, please contact media@science.upd.edu.ph.

Imbensyon ng mga Siyentista sa UP kayang ibaba ang presyo ng Terahertz Antenna Device

Imbensyon ng mga Siyentista sa UP kayang ibaba ang presyo ng Terahertz Antenna Device

Published: October 3, 2025
By: Eunice Jean C. Patron
Translated by: Dr. Eizadora T. Yu

Nakabuo ng bagong semiconductor structure ang mga syentista ng UP Diliman College of Science na pwedeng magbigay-daan sa mas abot-kaya at mas reliable na Terahertz (THz) technology. Isa sa mga layunin ng THz research ay palawakin ang paggamit ng THz-Time Domain Spectroscopy (THz-TDS).  Nalutas ng imbensyong ito ang pangunahing hadlang na teknikal at ekonomikal sa paggamit ng THz technology, na maaring magamit sa mga aplikasyon tulad ng medical imaging at high-speed wireless communication.

 

Ang Riber 32P MBE equipment na ginamit upang palaguin ang THz emitter. Ang THz emitter ay binubuo ng p-InAs epitaxial layers na nasa ibabaw ng patong-patong na InGaAs/GaAs superlattice at GaAs buffer na nasa ibabaw ng growth-interrupted GaAs region at n-GaSb substrate. (Photo credit: Dr. Cyril Salang)

Nagpakilala ng bagong disenyo ng semiconductor sila Dr. Cyril Salang ng Materials Science and Engineering Program (MSEP), kasama sina Dr. Arnel Salvador, Dr. Armando Somintac, at Dr. Elmer Estacio ng National Institute of Physics (NIP), at Dr. Joselito Muldera ng RIKEN (ang RIKEN ay isang pambansang institusyong pang-agham sa Japan). Tampok ng bagong disenyo ang isang substrate, isang buffer layer at isang epitaxial layer sa ibabaw. Ang epitaxial layer ay isang manipis na layer ng kristal.

 

Ang katangi-tangi sa kanilang disenyo ay ang paggamit ng isang “mismatched buffer layer” na isang materyal na may atomic structure (o lattice constant) na ibang-iba kumpara sa substrate sa ibaba at itaas ng epitaxial layer. Bagama’t karaniwang nagdudulot ng mga depekto o mahinang performance ang mismatches, nakakagulat na ang kombinasyong ito ay nakabuo ng mga layers na mataas ang kalidad, at kasing husay o mas mahusay pa sa mga tradisyunal na materyales na ginagamit sa THz emitters.

 

Nagdagdag din sila ng “growth-interrupted  region” at isang superlattice, isang istrukturang gawa sa pinagpatong-patong na mga manipis na layer, para palakasin ang kapit sa pagitan ng mga sangkap kahit na may lattice mismatch. Isang layer ng p-type indium arsenide (p-InAs) ay pinatubo sa ibabaw ng isang superlattice, na siya naming dineposito sa taas ng pangunahing buffer layer na siya naming nasa itaas ng isang “growth-interrupted region” sa itaas ng isang murang substrate, gallium antimonide (n-GaSb).

 

Nagpakita ng kahanga-hangang resulta ang imbensyon na ito sa mga test. Ang performance nito ay katulad ng tradisyunal na bulk materials kapag gumagamit ng 0.80 μm laser, at mas mahusay pa kapag gumamit ng 1.55 μm fiber laser. Lumalabas na mas mura at praktikal para sa karaniwang paggamit ang imbensyon nila kaya’t maaari itong maging game-changer para sa THz-TDS systems.

 

Ibinahagi ni Dr. Salang na umabot ng labing isang taon mula sa unang idea noong 2013 hanggang sa pagbigay ng patent noong 2024.  “Na-publish ang aking papel noong 2015, na sinundan ng isang invention disclosure sa parehong taon. Sa tulong ng UP Diliman Office of the Vice Chancellor for Research and Development (OVCRD), naisumite ang aplikasyon para sa patent noong Pebrero 2016 at opisyal na naaprubahan noong 2024,” aniya.

 

Sa pagkakaloob ng bagong patent, mas malakas na ang posisyon ng pangkat nila Dr. Salang upang makapag-ambag sa lumalaking industriya ng Terahertz. “Ang pagtanggap ng isang pambansang patent ay nangangahulugan na kinikilala ang orihinalidad ng aming trabaho. Hinihikayat ako nitong magpatuloy sa paggawa ng mga bagong inobasyon,” dagdag niya.

 

For interview requests and other concerns, please contact media@science.upd.edu.ph.

UPD scholars win best presentations in 13th ASTHRDP Graduate Scholars’ Conference

UPD scholars win best presentations in 13th ASTHRDP Graduate Scholars’ Conference

Published: September 25, 2025
By: DOST-ASTHRDP Staff
Edited By: Eunice Jean C. Patron

Four scholars from the University of the Philippines – Diliman College of Science (UPD-CS) took home the award for best presentations in the 13th Accelerated Science and Technology Human Resource Development Program (ASTHRDP) Graduate Scholars’ Conference, held on September 18-19, 2025 at the Limketkai Luxe Hotel in Cagayan de Oro City, Misamis Oriental.

 

The winners were awarded a P10,000 cash prize and certificates of recognition in multiple categories and types of presentations:

 

Marsden Badlisan, an MS Physics student, won the best Oral Presentation in Physical Sciences for his thesis on “Electrically Controlled Goos-Hänchen Shift of a Light Beam due to a ZnO-GaAs Structure.”

 

Nicole Joy Datu received recognition for the best Oral Presentation in Mathematical and Computational Science. Her dissertation as a PhD Mathematics student was titled “On Strongly Φ-Reversible Elements of the Symplectic Group.”

 

Miguel Revilla claimed the best Oral Presentation in Environmental Sciences for his doctoral dissertation in Meteorology on “Spatio-temporal and Surface-level Analysis of Tropical Cyclones Maintaining or Intensifying in the Philippines.”

 

Wendell Manuel, an MS Materials Science and Engineering scholar, won the best Poster Presentation in Physical Sciences for his thesis entitled “Tuned FeO/Fe3O4 Nanoparticles and Superclusters for Enhanced Magnetic Hyperthermia.”

 

(L-R) UPD awardees Wendell Manuel, Miguel Revilla, ASTHRDP Project Leader Dr. Cynthia Saloma, Nicole Joy Datu, and Marsden Badlisan proudly display their certificates of recognition and cash prizes.

Organized annually by the Department of Science and Technology – Science Education Institute (DOST-SEI) in collaboration with the National Science Consortium, this year’s conference was hosted and chaired by the Mindanao State University – Iligan Institute of Technology (MSU-IIT), with Central Luzon State University (CLSU) serving as co-chair.

 

With the theme “Advancing Climate Action and Environmental Stewardship for the Well-being of Every Filipino,” the conference provided a platform for scholars to present their thesis or dissertation outputs to fellow scholars and academics. Furthermore, it aimed to promote research collaboration opportunities and the exchange of knowledge and experiences on the latest trends and developments in science and technology.

 

Attending the prestigious two-day conference were 200 scholars, scientists, and project leaders from across the country. Among these were 21 scholars from UPD who were slated to showcase their research outputs across the five presentation categories. The university’s delegation was led by Dr. Cynthia Saloma, the ASTHRDP project leader and Dean of UPD-CS.

 

Marsden Badlisan: “I would like to acknowledge and thank the DOST-ASTHRDP for the opportunities and support they provided. The DOST-ASTHRDP is not just a scholarship — it uplifts a nation through science and innovation.”

Wendell Manuel: “Our study shows how small (nano) things can potentially make a big impact. This would not have been possible without the support of my adviser, our international partners, and of course, DOST.”

Nicole Joy Datu: “I am deeply grateful to DOST-SEI for supporting young researchers like me. Growing up, I was told math was only for the naturally talented, but I’ve learned that hard work and the right support can take you just as far. I hope this inspires others, especially women, to pursue mathematics and science.”

 

Miguel Revilla: “Thanks to the DOST-ASTHRDP scholarship, it has become easier for aspiring meteorologists to do research that not only expands our knowledge of the environment but could also help the country in disaster preparedness.”

UPD scholars, faculty, and ASTHRDP project leader and staff represent the university at the 13th ASTHRDP Graduate Scholars’ Conference. Front row, L-R: Dr. Genevieve Macam, Dr. Eizadora Yu, Dr. Cynthia Saloma, Dr. Giovanni Tapang, Dr. Alvin Acebedo.

The event commenced with an opening program featuring the Integrated Performing Arts Guild and the singing of the national anthem and a doxology led by the MSU-IIT OCTAVA Choral Society. Welcoming remarks were delivered by MSU-IIT Chancellor Prof. Alizedney Ditucalan, JD, LLM and DOST Regional Director Engr. Romela Ratilla, followed by opening remarks from DOST-SEI Director Dr. Jayeel Cornelio.

 

The keynote address was delivered by DOST Secretary Dr. Renato Solidum Jr., who urged scholars to conduct their research beyond classrooms and laboratories and bring science-informed solutions directly to communities that need them the most. This was followed by a message of support from DOST Undersecretary for Science and Technology Services Ms. Maridon Sahagun. The conference proceedings were officially kicked off with a ribbon cutting ceremony and the unveiling of the scholars’ poster exhibits.

 

Scholars presented their thesis or dissertation outputs in five thematic categories: Agricultural Sciences, Environmental Sciences, Biological and Health Sciences, Physical Sciences, and Mathematical and Computational Science. Oral and poster presentations were evaluated by a panel of academic experts, which included UPD faculty members Dr. Alvin Acebedo, Dr. Eizadora Yu, Dr. Gennevieve Macam, and Dr. Giovanni Tapang.

 

Plenary lectures featuring calls to action on climate change were also delivered by distinguished scientists such as Fr. Jose Ramon Villarin, S.J. Ph.D. of Ateneo de Manila University and Dr. Ronilo Jose Flores of UP Los Baños. The second day featured equally insightful talks from Dr. Laura David of UPD and Dr. Hernando Bacosa of MSU-IIT.

 

A lively fellowship dinner capped off the first day, showcasing song and dance numbers and a spoken word and multimedia presentation by the scholars.

 

The conference concluded with the awarding of winners in each presentation category. Certificates of appreciation were also given to all participants and speakers. Finally, the program ended with closing remarks from Dr. Elaida Fiegalan, conference co-chair and ASTHRDP project leader in CLSU.

 

ASTHRDP is a graduate scholarship program implemented by DOST-SEI in collaboration with the National Science Consortium, which is composed of eleven member universities all across the country. The program aims to accelerate the production of high-level human resources needed for research and development in priority Science and Technology areas. By supporting Master in Science and Doctorate students, ASTHRDP seeks to help improve the country’s global competitiveness and capability to innovate through Science & Technology. More information about the DOST-ASTHRDP Scholarship can be found here: https://science.upd.edu.ph/dost-asthrdp.

 

For interview requests and other concerns, please contact media@science.upd.edu.ph.

UP Scientists Pinag-aralan ang Kontribusyon ng Duktor at Katipunerong si Francisco Tongio Liongson, MD

UP Scientists Pinag-aralan ang Kontribusyon ng Duktor at Katipunerong si Francisco Tongio Liongson, MD

Published: September 19, 2025
By: Dr. Benjamin Vallejo Jr.
Translated by: Dr. Ian Kendrich C. Fontanilla

Ang mga katulad nina Dr José Rizal, Heneral Antonio Luna, Juan Luna, at Marcelo H. del Pilar ay pamilyar sa maraming Pilipino. Taliwas nito, di gaanong tanyag ang karera ni Dr. Francisco Tongio Liongson.

Kilala ang buhay at karera ng mga Ilustradong Pilipino sa Madrid nitong huling dalawang dekada ng ika-19 na siglo. Ang mga katulad nina Dr José Rizal, Heneral Antonio Luna, Juan Luna, at Marcelo H. del Pilar ay pamilyar sa maraming Pilipino. Taliwas nito, di gaanong tanyag ang karera ni Dr. Francisco Tongio Liongson. Tulad ni Heneral Luna, nagsanay si Liongson bilang isang siyentista sa Universidad Central de Madrid, kung saan nakuha niya ang kanyang doktorado, at nagpatuloy ng postdoctoral training sa Institut Pasteur sa Paris. Tulad ng maraming siyentistang Pilipinong nag-aral sa ibayong dagat, bumalik siya sa layuning magtatag sana ng mga laboratoryo at magturo ng mga medical student, kung hindi lang nangyari ang rebolusyon at nakamit ang kasarinlan ng Pilipinas.

 

Si Dr. Francisco Tongio Liongson ay isa sa mga siyentista na, matapos ang pag-aaral ng doktorado, ay sumapi sa Katipunan at nakipaglaban sa Rebolusyon. Ang mga siyentista mula sa UP Diliman College of Science (UPD-CS)—Dr. Benjamin M. Vallejo Jr. ng Institute of Environmental Science and Meteorology, at mga kapwa may-akda na sina Dr. Rodrigo Angelo C. Ong at Raymundo Pascual Addun—ay naglathala kamakailan ng isang papel tungkol sa karera ni Dr. Liongson.

 

Nirebyu ng kanilang papel, na batay sa doctoral thesis at clinical notes ni Liongson, kung paano na-conceptualize ni Liongson ang kanyang pag-unawa sa immunology—na isang umuusbong na larangan noong unang bahagi ng 1890s. Gamit ang primary scientific research material na sinagguni ni Liongson—gaya ng mga pag-aaral nina Metchnikoff, Toussaint, von Behring, Pasteur, Roux, at Héricourt—nailarawan ng mga mananaliksik ang pag-usad ng medical at clinical theories ni Dr. Liongson, lalo na sa pagbuo ng bakuna laban sa anthrax.

 

Nakagawa si Dr Liongson ng mga haka-haka at konklusyon na na-anticipate ang marami sa advances sa immunology noong ika-20 siglo, tulad ng humoral theory. Sa pamamagitan ng pananaliksik, mariin niyang itinaguyod ang pagbabakuna bilang isang paraan upang labanan ang mga nakakahawang sakit at iligtas ang milyun-milyong buhay. Sa unang 15 taon ng ika-20 siglo, 18 milyong Pilipino ang nabakunahan. Bilang resulta, bumaba ang mga namatay mula sa mga sakit na kayang puksain ng bakuna—mula 40,000 noong 1902 hanggang 823 na lamang noong 1913.

 

Si Dr. Liongson ay nagsilbi bilang military doctor ni Heneral Luna noong Rebolusyon. Pagkatapos na mapasailalim ang buong Pilipinas sa mga Amerikano noong 1902, siya ay naging doktor ng probinsiya ng Pampanga; kalaunan ay pumasok siya sa pulitika at nahalal bilang Senador ng Pampanga noong 1916, kung saan nag-akda siya ng mga panukalang batas ukol sa public health at vaccination. Namatay siya noong 1919 sa edad na 49 dahil sa anthrax—na sa kabalintunaan ay naging paksa ng kanyang doctoral thesis. Ang kontribusyon ni Liongson sa immunology ay humantong sa unang matagumpay na clinical trial ng isang anthrax vaccine noong 1935.

 

Ang papel nina Vallejo, Ong, at Addun, na pinamagatang “A Filipino Doctor at the Birth of Immunology and National Revolution: The Career of Francisco Tongio Liongson, MD,” ay inilathala sa Journal of Research in the History of Medicine ng Shiraz University of Medical Sciences sa Iran.

 

References:
Vallejo Jr., B., Ong, R.A.C., Addun, R.P., 2025. A Filipino Doctor at the Birth of Immunology and National Revolution: The Career of Francisco Tongio Liongson, MD. Res Hist Med, 14(3), pp. 239-252. doi: 10.30476/ rhm.2024.103717.1239.

 

For interview requests and other concerns, please contact media@science.upd.edu.ph.